
Sliding Sync.next

Ivan Enderlin — Matrix Conference 2024

Stabilising an experimental
new sync mechanism

At the beginning…

• Matrix is about communication

• Communication happens inside rooms

• Rooms are listed in a room list

• Each room contains a timeline, composed of events

• We need to sync the rooms with their new events, including e2ee events

• We want to sync as fast as possible

Join me
(alt. 1530m)

Driven by
room list features

Sorting
• live, works while syncing

• how to sort encrypted
rooms?

Markers

Room
• preview (may be encrypted)

• name with heroes

• room avatar

• what if the event is not a
m.room.message?

Filtering and searching
• live, works while syncing

Sliding sync in a nutshell

• Iterative sync

• Load the room list page by page

• Rooms are sorted

• How to sort rooms if they are encrypted?

• Pre-populate a timeline on-demand

• How many events do we want?

• Load more events for rooms that are likely to be opened by the user

• Can we decrypt the latest event for the room preview?

• Query other data, like e2ee events, account data, read receipts, members…

Enter MSC3575
Sliding sync

• December 20th, 2021, first draft of MSC3575

• First server implementation as a proxy, running on top of Synapse

• First client implementation inside the Matrix Rust SDK

• First app to use it is Element X.

• Let the fun begins

• One new server. One new client. Two new apps. One new sync
mechanism.

‣ What can go wrong?

Where the bug
comes from ?

Test

Proxy Matrix Rust SDK

Fix bug?
New feature?

Repeat

The debugging cycle (don’t do that)

Element X.

What did we test?

• Accuracy

• Do we have all the correct data we need?

• Can we select more data when we need to?

• Network performance

• Bandwidth, request and response sizes

• How fast is it to recover from an error, or an inactive session?

• How fast is it to render the room list or a room?

• Does it handle all the e2ee scenarios?

The sliding sync proxy

• 1864 commits

• 204 files, 55’349 lines

• Released to the community

The Matrix Rust SDK

• Introduce a new SlidingSync API

• Introduce new APIs built on top of
sliding sync
• RoomListService
• EncryptionSync
• NotificationClient

• API have been carefully designed
to avoid any sliding sync aspects,
i.e. it feels agnostic of any sync
mechanisms

Element X.

• A new Matrix client

• Built entirely on top the Matrix
Rust SDK

• Requiring sliding sync

Sliding sync principles

• The server maintains one or more lists of rooms, based on the request

• A list is sorted and filtered

• A list is updated by some events

• Rooms move in a list if one of their event triggers a “bump” (a new sort)

• Each room of a list has a maximum number of events

• It pre-populates the timeline

• The client requests a slice of each list, based on a range

Sliding sync sessions
Client Server

First request, no pos

Respond with a pos A Start a session

Next request, with pos A

Respond with a pos B Known pos, session is kept

Next request, with pos X

Respond with an error
Unknown pos, or pos is too old,
session is closed

pos is a totally opaque value for the client

HTTP: the request

POST /_matrix/client/unstable/org.matrix.msc3575/sync?pos=7

{
 "conn_id": "…",
 "txn_id": "…",
 "lists": { . . . },
 "room_subscriptions": { … },
 "unsubscribe_rooms": { … },
 "extensions": { … }
}

HTTP: the request
"lists"

"lists": {
 "my_list_name": {
 "ranges": [[0, 9]],
 "sort": ["by_recency", "by_name"],
 "bump_event_types": ["m.room.message", …],
 "timeline_limit": 1,
 "include_heroes": true,
 "filters": [
 "is_tombstoned": false,
 "not_room_types": ["m.space"]
],
 "required_state": [["m.room.encryption", ""], …]
 },
 …
}

HTTP: the response

{
 "pos": "…",
 "txn_id": "…",
 "initial": …,
 "lists": { . . . },
 "rooms": { . . . },
 "extensions": { … }
}

HTTP: the response

"lists": {
 "my_list_name": {
 "count": 42,
 "ops": [
 {
 "op": "SYNC",
 "range": [0, 3],
 "room_ids": [
 "!foo:bar",
 …
]
 }
]
 }
}

"lists"

HTTP: the response
"rooms": {
 "!foo:bar": {
 "name": "Alice and Bob",
 "avatar": "mxc://...",
 "initial": true,
 "required_state": […],
 "timeline": [
 {
 "sender": "@alice:qux",
 "type": "m.room.message",
 "content": { "body": "Hello 👋" }
 }
],
 "prev_batch": "t111_222_333",
 "joined_count": 1,
 "invited_count": 0,
 "notification_count": 1,
 "highlight_count": 0
 },
 …
}

"rooms"

Sliding sync in “action”
Client Server

!room1

!room2
!room3

!room4

!room5 !room7

!room8

!room9

!room10

Federation

!room6

request #1:
• pos = None
• range = 0..=4

Sliding sync in “action”
Client Server

!room1

!room2

!room3

!room4

!room5

!room7

!room8

!room9

!room10

Federation

request #1:
• pos = None
• range = 0..=4

!room6

re
sp

on
se

Sliding sync in “action”
Client Server

!room1

!room2

!room3

!room4

!room5

!room7

!room8

!room9

!room10

Federation

request #1:
• pos = None
• range = 0..=4

!room6

Sliding sync in “action”
Client Server

!room1

!room2

!room3

!room4

!room5

!room7

!room8

!room9

!room10

Federation

request #1:
• pos = None
• range = 0..=4

!room6

Sliding sync in “action”
Client Server

!room1

!room2

!room3

!room4

!room5

!room7

!room8

!room9

!room10

Federation

request #2:
• pos = A
• range = 0..=4

!room6

Sliding sync in “action”
Client Server

!room1

!room2

!room3

!room4

!room5

!room7

!room8

!room9

!room10

Federation

request #2:
• pos = A
• range = 0..=4

!room6
re

sp
on

se

Sliding sync in “action”
Client Server

!room1

!room2

!room3

!room4

!room5

!room7

!room8

!room9

!room10

Federation

request #2:
• pos = A
• range = 0..=4

!room6

Sliding sync in “action”
Client Server

!room1

!room2

!room3

!room4

!room5

!room7

!room8

!room9

!room10

Federation

request #3:
• pos = B
• range = 0..=9

!room6

re
sp

on
se

Sliding sync in “action”
Client Server

!room1

!room2

!room3

!room4

!room5

!room7

!room8

!room9

!room10

Federation

request #3:
• pos = B
• range = 0..=9

!room6

Sliding sync in “action”
Client Server

!room1

!room2

!room3

!room4

!room5

!room7

!room8

!room9

!room10

Federation

request #3:
• pos = B
• range = 0..=9

!room6

$ev1

$ev2

$ev3

Sliding sync in “action”
Client Server

!room1

!room2

!room3

!room4

!room5

!room7

!room8

!room9

!room10

Federation

!room6

Sliding sync in “action”
Client Server

!room1

!room2

!room3

!room4

!room5

!room7

!room8

!room9

!room10

Federation

!room6

request #4:
• pos = C
• range = 0..=9

re
sp

on
se

Sliding sync in “action”
Client Server

!room1

!room2

!room3

!room4

!room5

!room7

!room8

!room9

!room10

Federation

!room6

request #4:
• pos = C
• range = 0..=9

Concurrent sliding syncs inside the client

RoomListService EncryptionSync

Sliding sync with
"conn_id": "room-list"

Sliding sync with
"conn_id": "encryption"

NotificationClient

Sliding sync with
"conn_id": "notifications"

Application
2 sync loops

Push notifications
1 sync loop

Error or Terminated

The syncing room list state machine

Init

SettingUp

Recovering Running

Init

SettingUp

Running

Recovering

all_rooms:
• selective range 0..=19

all_rooms:
• growing range batch = 100

previous state

all_rooms:
• selective range 0..=19

*only one list (all_rooms) is explained

Client ranges API

Selective range:

• always the same range

Growing range:

• starts from 0

• adds batch_size every time

Example with size = 20:

• request #1: 0..=19

• request #2: 0..=19

• request #3: 0..=19

Example with batch_size = 100:

• request #1: 0..=99

• request #2: 0..=199

• request #3: 0..=299

Taking a break
(alt. 2740m)

Is sliding sync working?

• After almost 2 years of iteration, an efficient pattern is emerging

• It’s working

• It’s fast

• It’s really fast (within 3 order of magnitude compared to sync v2)

• But the proxy is too costly to run

• And there is bugs… like… complex bugs

• Bugs hide in features we may not need

‣ Now we know what to do: might we simplify sliding sync?

The objective

Removing filters
• Filtering the room list must be

instantaneous

• Filtering moves on client-side

• Remove most filters from the
request:
␡is_dm
␡spaces
␡is_encrypted

• is_invite
␡is_tombstoned
␡room_types
• not_room_types
␡room_name_like
␡tags
␡not_tags

␡others

let (stream, controller) = room_list.entries_with_dynamic_adapters(…);
controller.set_filter(Box::new(new_filter_all(vec![
 Box::new(new_filter_unread()),
 Box::new(new_filter_favourite()),
 Box::new(new_filter_fuzzy_match_room_name("matco")),
])));

Removing sorting operations
• Sorting happened on the server-side, via ops

• The server was maintaining the lists and was sending the “diff”s

• SYNC or INVALIDATE: Insert or remove a range of rooms

• INSERT or DELETE: insert or delete a single room

• Super complex, incorrect by nature, and costly for the server = error-prone
and inefficient

• Remove ops entirely

• Sorting moves client-side

stream.sort_by(new_sorter_lexicographic(vec![
 Box::new(new_sorter_recency()),
 Box::new(new_sorter_name())
]))

Other removals
A detailed list for the implementors

␡bump_event_types is now hard-coded on the server-side

␡delta_token was never implemented

␡slow_get_all_rooms can be replaced by a growing range

␡include_old_rooms is hard-coded on the server-side

␡unsubscribe_rooms is no more possible (can only subscribe)

End of the experiment

• The proxy aimed at iterating and hacking quickly for the experiment

• At this point, we know exactly what we want

• Sliding sync is more stable

• Plus, we don’t want to keep the proxy on top of Synapse

• Let’s deprecate the proxy

Enter MSC4186

• August 31st, 2024, first draft of MSC4186
• POST /_matrix/client/unstable/org.matrix.simplified_msc3575/sync

• Simplified sliding sync is implemented inside Synapse!

• The proxy doesn’t and won’t implement simplified sliding sync

• We are migrating from the proxy to Synapse

• We want to sunset the proxy as soon as possible

• Farewell playmate

• The Matrix Rust SDK speaks both MSC3575 and MSC4186

Simplified sliding sync

Migration

User is logged-in

Server supports
sliding sync

User is using the
proxy

Enjoy sliding sync
with the server

Can you log out
please?

Element X. starts

yesno

yesno

Enjoy sliding sync
with the proxy

yesno

yesno

Server supports
sliding sync

no

yes()
• Element X. automagically

detects sliding sync on the
homeserver and switches
the user

• Homeserver maintainers
have little to do

1. Update the homeserver

2. Wait for all users to
migrate from the proxy

3. Uninstall the proxy

Moooar simplifications

• Sliding sync has a non-negligible cost on the server-side

• Based on our experience, we see patterns that can be isolated

• Extract some usage of sliding sync into their own endpoint

• New /sync/e2ee

• Enhanced /context

• Reduce loads and complexity for the server (may remove conn_id)

In a short future

RoomListService EncryptionSync

Sliding sync with
"conn_id": "room-list" /sync/e2ee

NotificationClient

/context

Application
2 different sync loops

Push notifications
0 sync loop

Summit
(alt. 3180m)

Cabane du Trient, CH

Reactive programming
The beauty of higher-order Stream

ObservableMap<OwnedRoomId, Room>

Stream<Item = Vec<VectorDiff<Room>>

.subscribe()

Stream<Item = Vec<VectorDiff<Room>>

.filter()

Stream<Item = Vec<VectorDiff<Room>>

.sort_by()

Stream<Item = Vec<VectorDiff<Room>>

.limit()

• Single source of truth

• Ultra flexible, tiny memory footprint
(VectorDiff<Room> is 72 bytes only),
async, lazy, performant

• Traverse bindings to Swift and Kotlin
easily and cheaply

• Learn more at: https://mnt.io/series/
reactive-programming-in-rust/ ✨

https://mnt.io/series/reactive-programming-in-rust/
https://mnt.io/series/reactive-programming-in-rust/
https://mnt.io/series/reactive-programming-in-rust/

Thanks!

• MSC3575 was an experimental proposal

• Implemented inside a proxy

• MSC4186 is the final proposal

• Implemented inside Synapse

• Matrix Rust SDK supports both

• All applications based on the SDK support both:

• Element X., Fractal…

Fun patches

• SDK:

• (In eyeball) Implement the SortBy stream adapter (#43) +1,029 −23

• Client-side sorting in RoomList (#3585) +1,516 −1,779

• Remove RoomListEntry and ops (#3664) +167 −1,506

• Migrate from Sliding Sync to Simplified Sliding Sync (#3676) +600 −695

• Total +24,903 −15,262 over 525 pull requests

• Synapse:

• Add Sliding Sync /sync endpoint (#17187) +2,302 −15

https://github.com/jplatte/eyeball/pull/43
https://github.com/matrix-org/matrix-rust-sdk/pull/3585
https://github.com/matrix-org/matrix-rust-sdk/pull/3664
https://github.com/matrix-org/matrix-rust-sdk/pull/3676
https://github.com/element-hq/synapse/pull/17187

